Curiosidades de π

En distintas culturas, china, egipcia, europea, india, etc., se trato de obtener mejores aproximaciones de Pi por ser de aplicación en campos tan distintos como la astronomía o la construcción.

Muchos de los intentos de evaluar Pi en la antigüedad utilizaban el método de calcular el perímetro de polígonos inscritos y circunscritos a circunferencias.

Modernamente para evaluar Pi se utiliza una serie infinita convergente. Este método fue utilizado por primera vez en Kerala (India) en el Siglo XV

La probabilidad de que dos enteros positivos escogidos al azar sean primos entre si es 6/Pi2

Si se eligen al azar dos números positivos menores que 1, la probabilidad de que junto con el número 1 puedan ser los lados de un triángulo obtusángulo es (Pi-2)/4

En 1706, el inglés William Jones fue el primero en utilizar el símbolo griego para denotar la relación entre la circunferencia y su diámetro. Euler en su obra “Introducción al cálculo infinitesimal”, publicada en 1748, le dio el espaldarazo definitivo.

Muchos intentos para determinar Pi con exactitud están relacionados con el clásico problema de la cuadratura del círculo : “construir, utilizando únicamente regla y compás, un cuadrado de área igual a un círculo dado”.

Johan Heinrich Lambert(1728-1777), matemático alemán, probó que Pi es irracional. ( Un número irracional no se puede escribir en forma de fracción racional. Números racionales son : 1, 2 , 3/4, 17/23)

Ferdinand Lindemann(1852-1939) demostró que Pi es un número trascendental. Esto significa entre otras cosas que el problema de la cuadratura del círculo no tiene solución. Pese a ello todavía se sigue intentando.

El matemático alemán Ludolph van Ceulen(1540-1610) pidió que, como epitafio, escribiesen en su lápida las 35 cifras del número Pi que había calculado. Los alemanes llaman a Pi el número ludofiano.

William Shanks, matemático inglés, dedico 20 años de su vida a la obtención de 707 decimales de Pi.(En 1945 se descubrió que había cometido un error en el decimal 528 y a partir de este todos los demás eran incorrectos)

En 1949 uno de los primeros ordenadores el ENIAC, trabajando durante 70 horas, determino Pi con 2037 decimales.

En 1959, ordenadores en Francia e Inglaterra calcularon más de 10.000 cifras de Pi.

En 1961 Daniell Shanks(sin relación con William Shanks) y Wrench, obtuvieron en 8 h 23 min, 100.265 cifras en un IBM 7090.

En 1983, Yoshiaki Tamura y Yasumasa Kanada, en menos de 30 h, en un HITAC M-280 H obtuvieron 16.777.206 (224) cifras.

En Julio de 1997, Yasumasa Kanada y Daisuke Takahashi obtuvieron 51.539.600.000 cifras , utilizando un HITACHI SR2201 con 1024 procesadores.

Simon Newcomb, astrónomo y matemático americano, dijo en una ocasión que treinta cifras decimales de Pi darían la circunferencia del universo visible hasta una cantidad que sería imperceptible incluso con el más potente telescopio.

Una buena aproximacion de π es \sqrt {10}, fue usada por primera vez en China e India.

El sumatorio infinito convergente que diseño Leibniz es elñ siguiente:
 \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \dots = \frac{\pi}{4}
Una de varias reglas mnemotécnicas para π es:
Soy y seré a todos definible
mi nombre tengo que daros
cociente diametral siempre inmedible
soy de los redondos aros
La siguiente tabla indica algunas aproximaciones a π hasta 1424:
Año Matemático o documento Cultura Aproximación Error
(en partes por millón)
~1900 a. C. Papiro de Ahmes Egipcia 28/34 ~ 3,1605 6016 ppm
~1600 a. C. Tablilla de Susa Babilónica 25/8 = 3,125 5282 ppm
~600 a. C. La Biblia (Reyes I, 7,23) Judía 3 45070 ppm
~500 a. C. Bandhayana India 3,09 16422 ppm
~250 a. C. Arquímedes de Siracusa Griega entre 3 10/71 y 3 1/7
empleó 211875/67441 ~ 3,14163
<402 ppm
13,45 ppm
~150 Claudio Ptolomeo Greco-egipcia 377/120 = 3,141666… 23,56 ppm
263 Liu Hui China 3,14159 0,84 ppm
263 Wang Fan China 157/50 = 3,14 507 ppm
~300 Chang Hong China 101/2 ~ 3,1623 6584 ppm
~500 Zu Chongzhi China entre 3,1415926 y 3,1415929
empleó 355/113 ~ 3,1415929
<0,078 ppm
0,085 ppm
~500 Aryabhata India 3,1416 2,34 ppm
~600 Brahmagupta India 101/2 ~ 3,1623 6584 ppm
~800 Al-Juarismi Persa 3,1416 2,34 ppm
1220 Fibonacci Italiana 3,141818 72,73 ppm
1400 Madhava India 3,14159265359 0,085 ppm
1424 Al-Kashi Persa 2π = 6,2831853071795865 0,1 ppm
Anuncios

, ,

  1. Deja un comentario

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: